Leaderboard
728x15

Steven F. Udvar-Hazy Center: Space Shuttle Enterprise (nose view)

Large Rectangle

Some cool photo search images:


Steven F. Udvar-Hazy Center: Space Shuttle Enterprise (nose view)
photo search
Image by Chris Devers
See more photos of this, and the Wikipedia article.

Details, quoting from Smithsonian National Air and Space Museum | Space Shuttle Enterprise:

Manufacturer:
Rockwell International Corporation

Country of Origin:
United States of America

Dimensions:
Overall: 57 ft. tall x 122 ft. long x 78 ft. wing span, 150,000 lb.
(1737.36 x 3718.57 x 2377.44cm, 68039.6kg)

Materials:
Aluminum airframe and body with some fiberglass features; payload bay doors are graphite epoxy composite; thermal tiles are simulated (polyurethane foam) except for test samples of actual tiles and thermal blankets.

The first Space Shuttle orbiter, "Enterprise," is a full-scale test vehicle used for flights in the atmosphere and tests on the ground; it is not equipped for spaceflight. Although the airframe and flight control elements are like those of the Shuttles flown in space, this vehicle has no propulsion system and only simulated thermal tiles because these features were not needed for atmospheric and ground tests. "Enterprise" was rolled out at Rockwell International's assembly facility in Palmdale, California, in 1976. In 1977, it entered service for a nine-month-long approach-and-landing test flight program. Thereafter it was used for vibration tests and fit checks at NASA centers, and it also appeared in the 1983 Paris Air Show and the 1984 World's Fair in New Orleans. In 1985, NASA transferred "Enterprise" to the Smithsonian Institution's National Air and Space Museum.

Transferred from National Aeronautics and Space Administration

• • •

Quoting from Wikipedia | Space Shuttle Enterprise:

The Space Shuttle Enterprise (NASA Orbiter Vehicle Designation: OV-101) was the first Space Shuttle orbiter. It was built for NASA as part of the Space Shuttle program to perform test flights in the atmosphere. It was constructed without engines or a functional heat shield, and was therefore not capable of spaceflight.

Originally, Enterprise had been intended to be refitted for orbital flight, which would have made it the second space shuttle to fly after Columbia. However, during the construction of Columbia, details of the final design changed, particularly with regard to the weight of the fuselage and wings. Refitting Enterprise for spaceflight would have involved dismantling the orbiter and returning the sections to subcontractors across the country. As this was an expensive proposition, it was determined to be less costly to build Challenger around a body frame (STA-099) that had been created as a test article. Similarly, Enterprise was considered for refit to replace Challenger after the latter was destroyed, but Endeavour was built from structural spares instead.


Service

Construction began on the first orbiter on June 4, 1974. Designated OV-101, it was originally planned to be named Constitution and unveiled on Constitution Day, September 17, 1976. A write-in campaign by Trekkies to President Gerald Ford asked that the orbiter be named after the Starship Enterprise, featured on the television show Star Trek. Although Ford did not mention the campaign, the president—who during World War II had served on the aircraft carrier USS Monterey (CVL-26) that served with USS Enterprise (CV-6)—said that he was "partial to the name" and overrode NASA officials.

The design of OV-101 was not the same as that planned for OV-102, the first flight model; the tail was constructed differently, and it did not have the interfaces to mount OMS pods. A large number of subsystems—ranging from main engines to radar equipment—were not installed on this vehicle, but the capacity to add them in the future was retained. Instead of a thermal protection system, its surface was primarily fiberglass.

In mid-1976, the orbiter was used for ground vibration tests, allowing engineers to compare data from an actual flight vehicle with theoretical models.

On September 17, 1976, Enterprise was rolled out of Rockwell's plant at Palmdale, California. In recognition of its fictional namesake, Star Trek creator Gene Roddenberry and most of the principal cast of the original series of Star Trek were on hand at the dedication ceremony.

Approach and landing tests (ALT)

Main article: Approach and Landing Tests

On January 31, 1977, it was taken by road to Dryden Flight Research Center at Edwards Air Force Base, to begin operational testing.

While at NASA Dryden, Enterprise was used by NASA for a variety of ground and flight tests intended to validate aspects of the shuttle program. The initial nine-month testing period was referred to by the acronym ALT, for "Approach and Landing Test". These tests included a maiden "flight" on February 18, 1977 atop a Boeing 747 Shuttle Carrier Aircraft (SCA) to measure structural loads and ground handling and braking characteristics of the mated system. Ground tests of all orbiter subsystems were carried out to verify functionality prior to atmospheric flight.

The mated Enterprise/SCA combination was then subjected to five test flights with Enterprise unmanned and unactivated. The purpose of these test flights was to measure the flight characteristics of the mated combination. These tests were followed with three test flights with Enterprise manned to test the shuttle flight control systems.

Enterprise underwent five free flights where the craft separated from the SCA and was landed under astronaut control. These tests verified the flight characteristics of the orbiter design and were carried out under several aerodynamic and weight configurations. On the fifth and final glider flight, pilot-induced oscillation problems were revealed, which had to be addressed before the first orbital launch occurred.

On August 12, 1977, the space shuttle Enterprise flew on its own for the first time.

Preparation for STS-1

Following the ALT program, Enterprise was ferried among several NASA facilities to configure the craft for vibration testing. In June 1979, it was mated with an external tank and solid rocket boosters (known as a boilerplate configuration) and tested in a launch configuration at Kennedy Space Center Launch Pad 39A.

Retirement

With the completion of critical testing, Enterprise was partially disassembled to allow certain components to be reused in other shuttles, then underwent an international tour visiting France, Germany, Italy, the United Kingdom, Canada, and the U.S. states of California, Alabama, and Louisiana (during the 1984 Louisiana World Exposition). It was also used to fit-check the never-used shuttle launch pad at Vandenberg AFB, California. Finally, on November 18, 1985, Enterprise was ferried to Washington, D.C., where it became property of the Smithsonian Institution.

Post-Challenger

After the Challenger disaster, NASA considered using Enterprise as a replacement. However refitting the shuttle with all of the necessary equipment needed for it to be used in space was considered, but instead it was decided to use spares constructed at the same time as Discovery and Atlantis to build Endeavour.

Post-Columbia

In 2003, after the breakup of Columbia during re-entry, the Columbia Accident Investigation Board conducted tests at Southwest Research Institute, which used an air gun to shoot foam blocks of similar size, mass and speed to that which struck Columbia at a test structure which mechanically replicated the orbiter wing leading edge. They removed a fiberglass panel from Enterprise's wing to perform analysis of the material and attached it to the test structure, then shot a foam block at it. While the panel was not broken as a result of the test, the impact was enough to permanently deform a seal. As the reinforced carbon-carbon (RCC) panel on Columbia was 2.5 times weaker, this suggested that the RCC leading edge would have been shattered. Additional tests on the fiberglass were canceled in order not to risk damaging the test apparatus, and a panel from Discovery was tested to determine the effects of the foam on a similarly-aged RCC leading edge. On July 7, 2003, a foam impact test created a hole 41 cm by 42.5 cm (16.1 inches by 16.7 inches) in the protective RCC panel. The tests clearly demonstrated that a foam impact of the type Columbia sustained could seriously breach the protective RCC panels on the wing leading edge.

The board determined that the probable cause of the accident was that the foam impact caused a breach of a reinforced carbon-carbon panel along the leading edge of Columbia's left wing, allowing hot gases generated during re-entry to enter the wing and cause structural collapse. This caused Columbia to spin out of control, breaking up with the loss of the entire crew.

Museum exhibit

Enterprise was stored at the Smithsonian's hangar at Washington Dulles International Airport before it was restored and moved to the newly built Smithsonian's National Air and Space Museum's Steven F. Udvar-Hazy Center at Dulles International Airport, where it has been the centerpiece of the space collection. On April 12, 2011, NASA announced that Space Shuttle Discovery, the most traveled orbiter in the fleet, will be added to the collection once the Shuttle fleet is retired. When that happens, Enterprise will be moved to the Intrepid Sea-Air-Space Museum in New York City, to a newly constructed hangar adjacent to the museum. In preparation for the anticipated relocation, engineers evaluated the vehicle in early 2010 and determined that it was safe to fly on the Shuttle Carrier Aircraft once again.


Steven F. Udvar-Hazy Center: Northrop P-61C Black Widow
photo search
Image by Chris Devers
Compare & contrast:

Northrop P-61C Black widow:
* Front view
* Above view

Star Wars ARC-170 Fighter:
* Official page
* Wikia
* Wikipedia
* Toy review

I put it to you that they're the SAME THING.

* twin engines
* double-cockpit in front
* gunner's cockpit in back
* broad wing coming out from the middle

• • • • •

See more photos of this, and the Wikipedia article.

Details, quoting from Smithsonian National Air and Space Museum: Steven F. Udvar-Hazy | Northrop P-61C Black Widow:

The P-61 Black Widow was the first U.S. aircraft designed to locate and destroy enemy aircraft at night and in bad weather, a feat made possible by the use of on-board radar. The prototype first flew in 1942. P-61 combat operations began just after D-Day, June 6, 1944, when Black Widows flew deep into German airspace, bombing and strafing trains and road traffic. Operations in the Pacific began at about the same time. By the end of World War II, Black Widows had seen combat in every theater and had destroyed 127 enemy aircraft and 18 German V-1 buzz bombs.

The Museum’s Black Widow, a P-61C-1-NO, was delivered to the Army Air Forces in July 1945. It participated in cold-weather tests, high-altitude drop tests, and in the National Thunderstorm Project, for which the top turret was removed to make room for thunderstorm monitoring equipment.

Transferred from the United States Air Force.

Manufacturer:
Northrop Aircraft Inc.

Date:
1943

Country of Origin:
United States of America

Dimensions:
Overall: 450 x 1500cm, 10637kg, 2000cm (14ft 9 3/16in. x 49ft 2 9/16in., 23450.3lb., 65ft 7 3/8in.)

Long Description:
The P-61 Black Widow was the first United States aircraft designed from the start to find and destroy other aircraft at night and in bad weather. It served in combat for only the final year of World War II but flew in the European, Mediterranean, Pacific, and China-Burma-India theaters. Black Widow crews destroyed 127 enemy aircraft and 18 robot V-1 buzz bombs.

Jack Northrop's big fighter was born during the dark days of the Battle of Britain and the London Blitz in 1940. British successes against German daylight bombers forced the Luftwaffe (German Air Force) to shift to night bombing. By the time Royal Air Force (RAF) Spitfires could launch, climb out, and then try to intercept these raids, the bombers crews had usually dropped their loads and turned for home. An aircraft was needed to patrol the skies over England for up to seven hours during the night, and then follow radar vectors to attack German aircraft before they reached their target. U.S. Army Air Corps officers noted this requirement and decided that America must have a night fighter if and when it entered the war.

The Army awarded a contract to Northrop on January 30, 1941. The resulting design featured twin tail booms and rudders for stability when the aircraft closed in behind an intruder. It was a large aircraft with a big fuel load and two powerful engines. Armament evolved into four 20 mm cannons mounted in the belly firing forward and a powered, remote-controlled turret on top of the center fuselage equipped with four .50 cal. machine guns. The three-man crew consisted of the pilot, a gunner seated behind him, and a radar observer/gunner at the rear behind the gun turret. Only the pilot could fire the cannons but any of the three could operate the machine guns.

Simultaneously, work was proceeding, at a laboratory run by the Massachusetts Institute of Technology, to develop the airborne radar set. The Army tested an early design in a Douglas B-18 in 1941. The much-improved SCR-520 set was ready by early 1942. Meanwhile, Army enthusiasm for the XP-61 produced another contract on March 10, 1941, for 13 service-test YP-61s. Even before these airplanes flew, Northrop received orders for 410 production machines! Northrop test pilot Vance Breeze flew the aircraft on May 26, 1942. Although the Black Widow was nearly as large as a medium bomber, it was a true fighter. The only prohibited flight maneuvers were outside loops, sustained inverted flight, and deliberate spins.

As Northrop advanced the design toward production, supply problems arose and modifications became necessary. The 4-gun top turret was the same type fitted to the top forward position on the Boeing B-29 Superfortress (see NASM collection) and that bomber had production priority over the P-61. As a result, several hundred P-61s did not have this turret. Those that did experienced buffeting when the turret was traversed from side to side and a fix took time. By October 1943, the first P-61s were coming off the line. Training started immediately, and the first night fighters arrived in the European Theater by March 1944. Combat operations began just after D-Day (June 6) and the Black Widows quickly departed from their original role as defensive interceptors and became aggressors. They flew deep into German airspace, bombing and strafing trains and road traffic and making travel difficult for the enemy by day and at night.

P-61s arrived in the Pacific Theater at about the same time as the European Black Widows. For years, the Japanese had operated lone bombers over Allied targets at night and now U. S. fighters could locate and attack them. However, on June 30, 1944, a Mitsubishi BETTY (see NASM collection) became the first P-61 kill in the Pacific. Soon, Black Widows controlled the night skies. On the night of August 14-15, a P-61 named "Lady in the Dark" by her crew encountered an intruding Nakajima Ki-43 Hayabusa (Peregrine Falcon) OSCAR (see NASM collection) and eventually forced it into the sea without firing a shot. Although the war was officially over, no one was sure that all of the Japanese had heard the message and stopped fighting. The American night fighters flew again the next night and "Lady in the Dark" again found a target. It was a Nakajima Ki-44 Shoki (Demon) TOJO and the fighters maneuvered wildly as they attempted to gain an advantage. The P-61 crew lost and reacquired the Ki-44 several times then finally lost it for good and returned to base. The next day ground troops found the wrecked TOJO. In the darkness, Lady in the Dark's crew had forced the Japanese pilot to fly into the ground, again without firing a shot.

With the war over, the Army cancelled further production. Northrop had built 706 aircraft including 36 with a highly modified center fuselage. These F-15As (later redesignated RF-61C) mounted a number of cameras in the nose and proved able reconnaissance platforms. Many of these airplanes participated in the first good aerial photographic survey of the Pacific islands. A few, plus some special purpose P-61s, stayed in active service until 1950.

NASM's Black Widow is a P-61C-1-NO, U.S. Army Air Forces serial number 43-8330. Northrop delivered it to the Army on July 28, 1945. By October 18, this P-61 was flying at Ladd Field, Alaska, in cold weather tests and it remained there until March 30, 1946. This airplane later moved to Pinecastle Air Force Base, Florida, for participation in the National Thunderstorm Project. The project's goal was to learn more about thunderstorms and to use this knowledge to better protect civil and military airplanes that operated near them. The U. S. Weather Bureau and the National Advisory Committee for Aeronautics (NACA) undertook the study with cooperation from the Army Air Forces and Navy. With its radar and particular flight characteristics, the P-61 was capable of finding the most turbulent regions of a storm, penetrating them, and returning crew and instruments intact for detailed study.

Pinecastle personnel removed the guns and turret from 43-8330 in July 1946 to make room for new equipment. In September, the aircraft moved to Clinton County Army Air Base, Ohio, where it remained until January 1948. The Air Force then assigned the aircraft to the Flight Test Division at Wright-Patterson Air Force Base, Ohio. After declaring the airplane surplus in 1950, the Air Force stored it at Park Ridge, Illinois, on October 3 along with important aircraft destined for the National Air Museum.

But 43-8830 was not done flying. NACA asked the Smithsonian to lend them the aircraft for use in another special program. The committee wanted to investigate how aerodynamic shapes behaved when dropped from high altitude. The Black Widow arrived at the Ames Aeronautical Laboratory, Naval Air Station Moffett Field, California, on February 14, 1951. NACA returned the aircraft and delivered it to the Smithsonian at Andrews Air Force Base, Maryland, on August 10, 1954. When the engines shut down for the last time, this P-61 had accumulated only 530 total flight hours. Smithsonian personnel trucked it to the Paul Garber Facility in Suitland, Maryland. In 2006, the aircraft was preserved and assembled at the Udvar-Hazy Center. The three different paint schemes from its past service life have been revealed by carefully removing individual layers of paint.


Steven F. Udvar-Hazy Center: Space exhibit, Mobile Quarantine Facility decontamination from the Apollo missions (detail of "AMERICAN STANDARD" plaque and "PROJECT APOLLO RECOVERY TEAM" sticket with Snoopy (from Peanuts) in space helmet)
photo search
Image by Chris Devers
See more photos of this, and the Wikipedia article.

Details, quoting from Smithsonian National Air and Space Museum | Mobile Quarantine Facility

Contractor:
Melpar, Inc.

Manufacturer:
Airstream, Inc.

Country of Origin:
United States of America

Dimensions:
Overall: 8 ft. 7 in. tall x 9 ft. wide x 35 ft. deep, 12499.9 lb. (261.62 x 274.32 x 1066.8cm, 5669.9kg)

Materials:
Aluminum, Glass

This Mobile Quarantine Facility (MQF) was one of four built by NASA for astronauts returning from the Moon. Its purpose was to prevent the unlikely spread of lunar contagions by isolating the astronauts from contact with other people. A converted Airstream trailer, the MQF contained living and sleeping quarters, a kitchen, and a bathroom. Quarantine was assured by keeping the air pressure inside lower than the pressure outside and by filtering the air vented from the facility.

This MQF was used by Apollo 11 astronauts Armstrong, Aldrin, and Collins immediately after their return to Earth. They remained in it for 65 hours, while the MQF was flown from the aircraft carrier Hornet to the Johnson Space Center in Houston. They were allowed to emerge once scientists were sure they were not infected with "moon germs."

NASA transferred the MQF to the Smithsonian Institution in 1974.

Transferred from the National Aeronautics and Space Administration

Banner